Failure Analysis of Metals

These slides are examples of slides from our Failure Analysis of Metals course.

More information about the course is at www.imetllc.com
Failure Analysis

This course is about analysis of metal objects that stop performing as required or fail to meet quality requirements.

Metal stock used to fabricate components

Metal components

Welds, brazes, or solder joints
Course modules

1. Failure and Root Cause Analysis (15 minutes)
2. Failure Modes and Mechanisms (15 minutes)
3. Failure Analysis Process (20 minutes)
4. Analysis Techniques (60 minutes)
5. Fracture Modes and Mechanisms (15 minutes)
6. Fracture and Crack Failure Analysis Steps (15 minutes)
7. Fracture and Crack Case Studies (60 minutes)
8. Corrosion Failure Analysis Steps (35 minutes)
9. Corrosion Case Studies (60 minutes)
10. Manufacture and Assembly Failure Analysis Steps (15 minutes)
11. Manufacturing and Assembly Case Studies (30 minutes)
Details about taking the course

You must view all slides to complete a module
Â Do not need to complete a module in one sitting
Â If you exit a module before completion, the software will bookmark your place. When you return, click YES to "Would you like to resume where you left off?"

Exam at end of course
Â Score at least 70% required to pass exam
Â Three attempts to pass exam
Module 1. Failure and Root Cause Analysis
Module learning objectives

By the end of this module learners, will be able to:

Â Describe the situations when a metallurgical failure analysis is required
Â Distinguish among the categories of failure root causes for specific failures
Purpose of failure root cause analysis

Identify primary event or initial decision that enabled failure to occur.

Use this information to:
Å Implement corrective action to prevent failure from reoccurring, or
Å Assign blame to make a claim for compensation or defend against a claim.
Purpose of failure analysis

Failure analysis part of root cause analysis process.

Purpose is to gain information that will assist in determining:
Â Failure mechanism
Â Root cause of failure
Failure, defined

When an item or process stops performing as required
Examples of items that fail

Metal stock

Component

Joints between components

Devices
Examples of process failures

Manufacturing process

Assembly process
Root cause, defined

Primary event or initial decision that enabled operation of a failure mechanism

Use root cause information to:

Â Put measures in place to prevent failure from reoccurring in a design and manufacturing environment, or

Â Assign blame for reimbursement of damages associated with the failure for insurance and legal claims.
Situations that require failure analysis and root cause analysis

You would perform a failure analysis and root cause analysis during:

- Product development
- Manufacturing and assembly
- Shipping and storage
- Use

Click each failure situation to learn more. Click "Next" when you are ready for the next topic.
Situations that require failure analysis and root cause analysis

You would perform a failure analysis and root cause analysis during:

- **Product development**
- **Manufacturing and assembly**
- **Shipping and storage**
- **Use**

Click each failure situation to learn more. Click “Next” when you are ready for the next topic.
Failure during product development testing

Design engineers

• Test products during development.
• Evaluate reliability by exposing products to simulated use conditions.

One or more components or joints commonly fail early in development.
Failure during manufacturing and assembly

Sometimes, an item being produced does not meet specifications

Due to a number of reasons including:
Â Problems with incoming materials
Â Operator error
Â Process has not been optimized
Â Equipment malfunction
Failure during shipping and storage

Exposure to shipping and storage conditions can damage metal stock, components, or assemblies.
Failure during use

Exposure to operating conditions can cause components and joints to degrade and fail during use.

For simplicity, failure during installation, repair, and modification is included with failure during use.
Performing a Failure Analysis

Examine samples for:

- Physical appearance
- Microstructure
- Composition
- Mechanical, electrical, thermal, and cosmetic properties
Performing a Failure Analysis

Use the data obtained to determine:

- Failure mode
- Failure mechanism
Common categories of root cause failures

- Poor design
- Problems with product reliability test methods
- Problems with manufacturing or assembly processes
- Poor supplier quality control
- Insufficient specification
- Improper installation or repair
- Misuse/abuse
- Poor maintenance
- Wear out

Click each link to learn more. Click "Next" to continue to next section.
Root cause of failure: Poor design

Decisions that result in components and joints not capable of withstanding exposure to conditions typical for application

Deficiency may be due to:

- Insufficient specification of product, components, joints, and subassemblies
- Physical design of components and joints
- Selection of materials that are inappropriate for application
Root cause of failure: Problems with product reliability test methods

Methods used to evaluate product reliability can cause failures.

- Exposure conditions during testing too aggressive or poorly controlled
- Test samples poorly designed
- Test samples not properly prepared
Root cause of failure: Poor supplier quality control

Refers to supplier’s inability to ensure that item or material supplied is indeed what was ordered.

Related to:
Å Mistakenly sending wrong material, or
Å Not verifying that material meets purchaser’s specifications

Examples
Å Supplying bolts made of 304 stainless steel instead of 316
Å Supplying coil of sheet metal with low tensile strength
Root cause of failure: Insufficient specification

Not enough instruction to ensure that an item is properly

• Used
• Installed
• Repaired
• Modified

Category covers issues unrelated to product design.

Can lead to unintended exposure to conditions that cause degradation.
Root cause of failure: Improper installation or repair

Can result in:
- Damage to a product that reduces its reliability
- Unreliable connections between components

Examples:
- Over-tightening a fitting onto a pipe or valve
- Poor weld or solder joint between components
Root cause of failure: Misuse/abuse

Using something outside of the manufacturer's design parameters

Examples

- Driving a car in water

- Using a brass fitting in an ammonia environment
Root cause of failure: Poor or improper equipment maintenance

Many products require periodic maintenance.

Neglect or improper maintenance can result in failure.
Root cause of failure: Wear out

Components and equipment have a certain life expectancy.

Under normal use, most products degrade over time.
• Stop functioning due to failure of component or joint.
No certainty of determining failure mechanism or root cause

Analysis results may be inconclusive or background information may be insufficient.

However, it may be possible to identify probable causes or rule out possible causes.
Bibliography

G.F. Smith, Quality Problem Solving, ASQ Quality Press, 1998

G.F. Smith, Quality Problem Solving, ASQ Quality Press, 1998, p 53

End of module