Specifying Metal Hardness – Is it Enough?

 

Rockwell and Brinell hardness tests are common metal characterization methods used to determine whether metal stock or a metal component has the required properties. The reason for this is that these tests are simple and quick to perform, in addition to being inexpensive. However, while these tests do provide useful information, there is a danger to the common practice of specifying only hardness and alloy composition on component design drawings.

There are circumstances where a metal can meet the composition and hardness requirements, and still be unsuitable for use in the intended application. This can occur when the metal microstructure is deficient in a way that is undetectable by Rockwell or Brinell hardness testing.

See metallurgy courses & webinars
Need help with your product?

ferriteatgbsConsider the microstructure of a steel component. The microstructure consisted of martensite, with ferrite on what were austenite grain boundaries (arrows) before the austenite transformed to martensite. This was the result of improper quenching during heat treatment. The sample had a hardness of Rockwell C 38. However, the ferrite on the prior austenite grains compromised the mechanical properties of the metal by allowing a fracture path through the relatively soft ferrite. Without specifying that the microstructure should be completely martensitic, the component designer risked using components that met the spec, but were potentially unreliable.

Other examples where it is possible to have a Rockwell or Brinell hardness value that meets specification, but still have a component that is unreliable or unacceptable are:

  • Decreased corrosion resistance of stainless steels due to the formation of chromium carbide particles on the grain boundaries (sensitization).
  • Increased wear of bearing steels with hard carbide particles on the surface.
  • Increased susceptibility to stress corrosion cracking of precipitation hardened 2xxx aluminum alloys due to the formation of precipitates on the grain boundaries.
  • Orange peel in deep drawn components made from sheet metal with excessively large surface grains and normal size grains at the interior

The main thing to take away from this discussion is that specifying composition and hardness is often not enough. In many cases, it is important to specify the microstructure of stock metal or a component to improve the likelihood of consistently getting the desired metal properties. The importance of this increases as the expected component performance and reliability increases. Other analyses, such as tensile testing may also be required.

More information about the effects of microstructure on properties and the effects of processing on microstructure is in our Principles of Metallurgy, Metallurgy of Steel Heating, and Corrosion of Metals courses. There are also many books that discuss the relationship between processing, microstructure, and properties.

  • "A group of us took several courses (Principles of Metallurgy, Metallurgy of Steel, Corrosion of Metals) to become more knowledgeable about the science of metals to avoid problems. For me, the biggest impact of the training was on working with suppliers. I feel more confident asking questions and I now know the suppliers which know their stuff and which ones don’t. And it was great being able to get the training when it was convenient for me."

    Sam Bloodgood, VP Process Improvement, Hydraforce, Inc.
  • "I oversee several operations, including steel heat treating and laser welding. However, my background was in the construction materials industry. Principles of Metallurgy gave me the knowledge to have meaningful discussions with my engineers and be able to ask them better questions."

    Tom Parkman, Plant Manager, Simonds International.
  • “Principles of Metallurgy exceeded my expectations. The content was straightforward enough not to be burdensome, yet deep enough to provide a practical review of fundamental principles. I recommend this course to any engineer or technical person who has been out of school and working in industry for several years, but not necessarily having been focused on metallurgy.”

    Andy Jacobs, Staff Engineer, DePuy Orthopaedics, Inc.
  • “The Principles of Metallurgy course is broke up into convenient length modules that can be fit into the busiest schedule. The course is a good review for engineers who had a materials class ten or more years ago.”

    Paul Flury B/E Aerospace
  • “This is an excellent course (Metallurgy of Steel Heat Treating) for learning basic heat treating practices. The course introduces and covers a broad range of processes. I would recommend it for anyone in the steel business.”

    Jim Marks, Magellan Corporation
  • “This course has given me more confidence in my job and given me a better understanding of some of the heat treatments used in the business.”

    Mark Winter, Abbey Forged Products

Have more questions? Email mpfeifer@imetllc.com or call 847.528.3467

Why Industrial Metallurgists?

  • Practical, up-to-date content.
  • Metallurgy expertise and 20+ years of experience.
  • Courses designed for non-metallurgists.
  • Training accessible from anywhere with internet access.
  • Engaging content.
  • Convenience. Learn when it suits your schedule.
  • Avoid being overwhelmed with too much information at one time. Set your own pace.