Why Temper Through Hardened Steel

 

Imagine you’re a warrior during the middle ages and it’s time to get a new sword. So, you go to a blacksmith to buy a sharp, shiny long sword. A few weeks later you’re in a battle, fighting at the front of the shield wall. You take a huge swing at the enemy, who meets your blow with his sword, and your sword shatters into several pieces. Unfortunately for you, your blacksmith outsourced a batch of swords to a blacksmith on the other side of town who didn’t have time to temper the swords. As a result, the swords were strong, but brittle. Their lack of toughness meant that they could not absorb much of an impact before fracturing.

See metallurgy courses & webinars
Need help with your product?

Failure analysis results

Tempered martesite

Tempered martensite

Tempering is used to improve toughness in steel that has been through hardened by heating it to form austenite and then quenching it to form martensite. During the tempering process the steel is heated to a temperature between 125 °C (255°F) and 700 °C (1,292 °F). At these temperatures the martensite decomposes to form iron carbide particles. The higher the temperature, the faster the decomposition for any given period of time. The micrograph shows a steel after substantial tempering. The black particles are iron carbide.

Untempered martensite is a strong, hard, brittle material. The stronger and harder it is, the more brittle it is. The strength and hardness is a due to elastic strain within the martensite, which is a result of too many carbon atoms being in the spaces between the iron atoms in the martensite. As the amount of carbon in a steel increases (up to about 0.8 weight percent carbon) the martensite strength and hardness increases.

During the tempering process, the carbon atoms move out of the spaces between the iron atoms in the martensite to form the iron carbide particles. The strain within the martensite is relieved as the carbon atoms move out from between the iron atoms in the martensite. This results in an improvement in the steel toughness, at the expense of reduced strength.

The amount of tempering required depends on the particular application in which the steel will be used. In some cases, toughness is not important, so tempering at a low temperature for a short period of time is acceptable. In cases where very strong and tough steel is required a high carbon steel tempered at a high temperature might be used.

More information about steel heat treating is in our online, on-demand courses Principles of Metallurgy or Metallurgy of Steel Heat Treating. The book Steels: Processing, Structure, and Performance by George Krauss provides a comprehensive discussion of steel heat treating.

  • "A group of us took several courses (Principles of Metallurgy, Metallurgy of Steel, Corrosion of Metals) to become more knowledgeable about the science of metals to avoid problems. For me, the biggest impact of the training was on working with suppliers. I feel more confident asking questions and I now know the suppliers which know their stuff and which ones don’t. And it was great being able to get the training when it was convenient for me."

    Sam Bloodgood, VP Process Improvement, Hydraforce, Inc.
  • "I oversee several operations, including steel heat treating and laser welding. However, my background was in the construction materials industry. Principles of Metallurgy gave me the knowledge to have meaningful discussions with my engineers and be able to ask them better questions."

    Tom Parkman, Plant Manager, Simonds International.
  • “Principles of Metallurgy exceeded my expectations. The content was straightforward enough not to be burdensome, yet deep enough to provide a practical review of fundamental principles. I recommend this course to any engineer or technical person who has been out of school and working in industry for several years, but not necessarily having been focused on metallurgy.”

    Andy Jacobs, Staff Engineer, DePuy Orthopaedics, Inc.
  • “The Principles of Metallurgy course is broke up into convenient length modules that can be fit into the busiest schedule. The course is a good review for engineers who had a materials class ten or more years ago.”

    Paul Flury B/E Aerospace
  • “This is an excellent course (Metallurgy of Steel Heat Treating) for learning basic heat treating practices. The course introduces and covers a broad range of processes. I would recommend it for anyone in the steel business.”

    Jim Marks, Magellan Corporation
  • “This course has given me more confidence in my job and given me a better understanding of some of the heat treatments used in the business.”

    Mark Winter, Abbey Forged Products

Have more questions? Email mpfeifer@imetllc.com or call 847.528.3467

Why Industrial Metallurgists?

  • Practical, up-to-date content.
  • Metallurgy expertise and 20+ years of experience.
  • Courses designed for non-metallurgists.
  • Training accessible from anywhere with internet access.
  • Engaging content.
  • Convenience. Learn when it suits your schedule.
  • Avoid being overwhelmed with too much information at one time. Set your own pace.