Cracked Rivet Failure Analysis


rivet failure analysisProblem
Brass rivets were cracking during assembly, when the rivets were being set. Failure analysis of the rivets was performed as part of the process to determine the root cause of the cracking.

The rivets were manufactured by machining them from wire stock. The main requirements for the rivet material were:

  1. Easy to machine rivet from wire.
  2. Easy to form rivet during assembly.

See our webinar schedule
Need help with a failure analysis?

Meeting these two requirements put mutually exclusive constraints on the brass composition. Lead is added to improve machining, however lead reduces brass cold forming properties. The alloy selected had 0.9 to 1.5 % Pb.

Rivet Failure Analysis
Stereo zoom microscope (up to 70x) examination revealed that rivets were cracking at the portion deformed during the rivet setting process, when two components were being joined.

Composition analysis of cracked and uncracked rivets was performed using atomic absorption spectrocopy. The results indicated that uncracked rivets had less than 1.1% Pb and the cracked rivets had more than 1.3% Pb.

The root cause of the cracking was poor design. A new alloy was selected that had lower Pb. This required slowing down the machining process, but eliminated the cracking.

The problem could have been prevented by conducting a failure modes and effects analysis (FMEA) when the product was being designed. An FMEA involves reviewing components, assemblies, and subsystems to identify failure modes, and their causes and effects. Had the design team performed a design FMEA, they may have identified the mutually exclusive behavior of brass with Pb. Information about how to perform an FMEAs is available in the publication “Potential Failure Mode & Effects Analysis”, which is available from AIAG at

  • "A group of us took several courses (Principles of Metallurgy, Metallurgy of Steel, Corrosion of Metals) to become more knowledgeable about the science of metals to avoid problems. For me, the biggest impact of the training was on working with suppliers. I feel more confident asking questions and I now know the suppliers which know their stuff and which ones don’t. And it was great being able to get the training when it was convenient for me."

    Sam Bloodgood, VP Process Improvement, Hydraforce, Inc.
  • "I oversee several operations, including steel heat treating and laser welding. However, my background was in the construction materials industry. Principles of Metallurgy gave me the knowledge to have meaningful discussions with my engineers and be able to ask them better questions."

    Tom Parkman, Plant Manager, Simonds International.
  • “Principles of Metallurgy exceeded my expectations. The content was straightforward enough not to be burdensome, yet deep enough to provide a practical review of fundamental principles. I recommend this course to any engineer or technical person who has been out of school and working in industry for several years, but not necessarily having been focused on metallurgy.”

    Andy Jacobs, Staff Engineer, DePuy Orthopaedics, Inc.
  • “The Principles of Metallurgy course is broke up into convenient length modules that can be fit into the busiest schedule. The course is a good review for engineers who had a materials class ten or more years ago.”

    Paul Flury B/E Aerospace
  • “This is an excellent course (Metallurgy of Steel Heat Treating) for learning basic heat treating practices. The course introduces and covers a broad range of processes. I would recommend it for anyone in the steel business.”

    Jim Marks, Magellan Corporation
  • “This course has given me more confidence in my job and given me a better understanding of some of the heat treatments used in the business.”

    Mark Winter, Abbey Forged Products

Have more questions? Email or call 847.528.3467

Why Industrial Metallurgists?

  • Practical, up-to-date content.
  • Metallurgy expertise and 20+ years of experience.
  • Courses designed for non-metallurgists.
  • Training accessible from anywhere with internet access.
  • Engaging content.
  • Convenience. Learn when it suits your schedule.
  • Avoid being overwhelmed with too much information at one time. Set your own pace.