Welcome to my site

Posted by Michael Pfeifer, Ph.D., P.E.

Welcome to my website. Several years ago, someone remarked “you’re an alchemist” after I explained what I do. Alchemy circles, like the one shown here, represented different changes of matter. Though I can’t transform lead to gold, I can say that I can transform products by optimizing materials. I focus on understanding the science and engineering of materials in order to design and manufacture great products. Three principles are the basis of my approach:

6 Ways to Prevent Failure Analysis Frustration

Posted by Michael Pfeifer, Ph.D., P.E.

Have you ever run into the following situation? A component within your product broke or your manufacturing line was producing bad components, and you wanted to determine the root cause of the failure. This required determining the failure mode and failure mechanism, and also determining whether there were any metallurgical deficiencies in the metal. So, you sent a sample to a metallurgical lab and get a report, but the report didn't have the information you needed or you didn't know what to do with the information in the report.

What is the difference between strength and toughness?

Posted by Michael Pfeifer, Ph.D., P.E.

Strength is a measure of the stress that a crack-free metal can bear before deforming or breaking under a single applied load. Fracture toughness is a measure of the amount of energy required to fracture a material that contains a crack. The tougher the material, the more energy required to cause a crack to grow to fracture. For a particular alloy, lower fracture toughness corresponds to less ductility. For example, glass has very low toughness and is very brittle.

Why is Stainless Steel Corrosion Resistant?

Posted by Michael Pfeifer, Ph.D., P.E.
Pitting in 304 stainless steel

Stainless steel is known for its corrosion resistance in many environments in which carbon and low alloy tool steels would corrode. The corrosion resistance is a result of a very thin (about 5 nanometers) oxide layer on the steel's surface. This oxide layer is referred to as a passive layer since it renders the surface electrochemically passive in the presence of corrosive environments. The passive layer forms because of the chromium added to stainless steel.

Why do through hardened steels have to be tempered?

Posted by Michael Pfeifer, Ph.D., P.E.
Tempered marteniste

Imagine you’re a warrior during the middle ages and it’s time to get a new sword. So, you go to a blacksmith to buy a sharp, shiny long sword. A few weeks later you’re in a battle, fighting at the front of the shield wall. You take a huge swing at the enemy, who meets your blow with his sword, and your sword shatters into several pieces. Unfortunately for you, your blacksmith outsourced a batch of swords to a blacksmith on the other side of town who didn’t have time to temper the swords. As a result, the swords were strong, but brittle.